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Abstract

The relative response factors (RRFs) of a flame ionization detection (FID) system and two pulsed discharge
photoionization detection (PID) systems with different discharge gases are predicted for a set of organic compounds
containing various functional groups. As a first step, numerical descriptors were calculated based on the molecular structures
of compounds. Then, multiple linear regression (MLR) was employed to find informative subsets of descriptors that can
predict the RRFs of these compounds. The selected MLR model for the FID system includes seven descriptors and two
selected MLR models for the PID systems with argon- and krypton-doped helium as the discharge gases, respectively,
include six and five descriptors. The descriptors appearing in the MLR models were considered as inputs for the self-training
artificial neural networks (STANNs). A 7-7-1 STANN was generated for prediction of RRFs of the FID system, and two
STANNs with the topologies of 6-7-1 and 5-6-1 were generated for the two PID systems. Comparison of the results indicates
the superiority of neural networks over that of the MLR method. This is due to the nonlinear behaviors of relative response
factors for all type of detectors studied in this work.  2002 Published by Elsevier Science B.V.

Keywords: Neural networks, artificial, self-training; Response factors; Flame ionization detection; Photoionization detection;
Detection, GC; Regression analysis; Molecular descriptors

1. Introduction However, the different detector responses can be
used for peak identification of compounds with the

The development of sensitive and selective detec- same retention time. On the other hand, the response
tors has played a major role in the establishment of factor (RF) is essentially a correction factor, which
chromatography as an unrivaled analytical tool. The measures the response of a given compound to the
retention time can be used for identification of detecting device.
compounds, but it is well accepted that more than Since numerous compounds are unavailable as
one compound can have a similar retention time. standards, the development of a theoretical method

for estimating response factor seems to be useful.
The first work on the prediction of response factors*Corresponding author. Tel.: 198-21-6005-718; fax: 198-21-
of substituted benzenes and pyridines using a multi-6012-983.
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ment was published by Katritzky and Gordeeva [1]. applications. The back-propagation network receives
Also, Katritzky and coworkers applied the multiple a set of inputs, which are multiplied by each node’s
linear and nonlinear regression methods to predict weights. These products are summed for each node
the retention time and response factors of different and then a nonlinear transfer function is applied. The
organic compounds [2,3]. Jalali-Heravi and Fatemi goal of training the network is to change the weights
have used artificial neural networks (ANNs) for between the layers in a direction that minimizes the
predicting flame ionization detection (FID) and output errors. The changes in the values of the
thermal conductivity detection (TCD) response fac- weights can be obtained using Eq. (2):
tors for different series of organic molecules [4,5].

DW (n) 5hd O 1 aDW (n 2 1) (2)The use of the pulsed discharge source in a ij i j ij

photoionization detector has been described in the
literature [6,7]. The photon emission arises from the where DW is the change in the weight factor forij

discharge and is dependent upon the composition of each network node, d is the actual error of node i,i

the make-up gas passing through the discharge. and O is output of node j. The coefficients h and aj

When pure helium is used as the make-up gas the are the learning rate and the momentum factor,
emission arises from the following transition (Eq. respectively.
(1)) [8]: A self-training artificial neural network (STANN)

[12] is a new method for updating the node’s weights
1 1He (A S ) → 2He (1 S ) (1)2 u 0 and training of the networks in parallel fashion. In

the STANN, the important aspect is a network,
If the make-up gas passing through the discharge which trains another networks. The architecture of a

region is doped with argon or krypton, the emission STANN is shown in Fig. 1. The structure of network
spectra consists principally of the resonance lines
from the argon or krypton. The photoionization
detection (PID) response is proportional to the
number of electrons in the molecule with energies
less than the photoionization energies coming from
the discharge. Since, the emission lines of Ar and2

Kr are different, the response of compounds to the2

Ar-PID and Kr-PID systems are not the same.
The main aim of the present work was the

development of a quantitative–structure property
relationship (QSPR) using for the first time a self-
training artificial neural network (STANN) for pre-
dicting relative response factors (RRFs) for different
detection system. In this study, RRFs for FID and
PID systems with argon- and krypton-doped helium
as discharge gases (Ar-PID, Kr-PID) were predicted
for a diverse set of organic compounds.

2. Methods

Artificial neural networks (ANNs) are mathemati-
cal systems that simulate biological neural networks
[9–11]. They consist of processing elements (nodes,
neurons) organized in layers. Back-propagation neur-
al networks (BNNs) are most often used in analytical Fig. 1. The architecture of a STANN.
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Table 1
Compounds studied in this work

No. Compound No. Compound

Training set
1 Dibromomethane 62 3,3-Dimethylpentane
2 CHCl CH Cl 63 1-Heptene2 2

3 CCl CH 64 Toluene3 3

4 1,3-Dibromopropane 65 2,4-Dimethylpentane
5 CFCl CF Cl 66 Diisopropyl ether2 2

6 Ethyl disulfide 67 p-Xylene
7 3-Bromopentane 68 Trimethylacetonitrile
8 Idomethane 69 Ethyl benzene
9 2-Bromopentane 70 o-Xylene
10 1-Pentanethiol 71 Cumene
11 Ethyl iodide 72 n-Butylbenzene
12 1-Butanol 73 3-Hexyne
13 CH ClCH Cl 74 3-Ethyl-1-pentene2 2

14 1-Bromobutane 75 Cyclohexene
15 1-Bromopentane 76 Butyraldehyde
16 2-Hexanone 77 sec.-Butylbenzene
17 Cyclopentylchloride 78 Methyl tert.-butyl ether
18 2-Methylheptane 79 Isopropanol
19 2-Nitropropane 80 Propionitrile
20 Butyl formate 81 1-Chloropropane
21 2-Ethylbutyraldehyde 82 Propionaldehyde
22 2,3,4-Trimethylpentane 83 2-Butanone
23 cis-CHCl=CHCl 84 Ethanol
24 Propyl sulfide 85 Bicylco[2,2,1]hepta-2,5-diene
25 Cycloheptane 86 Methylcyclopentane
26 Propyl acetate 87 Crotonaldehyde
27 1,3-Dichlorobenzene 88 Hexane
28 CHCl CH 89 2-Chloropropane2 3

29 Ethylcyclohexane 90 a,a,a-Trifluorotoluene
30 Dipropyl ether 91 1-Hexyne
31 Isopropyl acetate 92 2-Methyl-1-pentene
32 2,3-Butanedione 93 1-Hexene
33 Nitromethane 94 2,2-Dimethylbutane
34 2-Methyl-1-propanol 95 m-Xylene
35 Cyclopropylcyanide 96 2-Methyl-2-propanol
36 Allylsulfide 97 Acetonitrile
37 1,2-Dichlorobenzene 98 Methacrylonitrile
38 1-Methylcyclohexene 99 Cyclopentane
39 4-Methylcyclohexene 100 Pentane
40 Methanol 101 2-Methyl-2-butene
41 Methyl propionate 102 1,2-Difluorobenzene
42 1-Ethylcyclopentene 103 Acrylonitrile
43 3-Pentanone 104 1-Pentene
44 1-Bromopropane 105 Hexafluorobenzene
45 trans-CHCl=CHCl Prediction set
46 Allyl acetate 106 CH Cl2 2

47 Valeraldehyde 107 CH ClCHClCH2 3

48 Ethyl acetate 108 Ethyl sulfide
49 3,3-Dimethyl-2-butanone 109 1,1-Dimethylcyclohexane
50 2,2,4-Trimethylpentane 110 3,3-Diethylpentane
51 3-Ethylpentane 111 Heptane
52 trans-2-Heptene 112 Butyronitrile
53 sec.-Butanol 113 1-Octyne
54 2-Pentanone 114 Propyl formate
55 3-Ethyl-2-pentene 115 1-Propanol
56 Acetaldehyde 116 Tetrahydrofuran
57 4-Bromo-m-xylene 117 Isobutyronitrile
58 1-Heptyne 118 2-Hexyne
59 2-Methyl-2-butanol 119 Propyl benzene
60 2-Bromo-p-xylene 120 Diethyl ether
61 2-Bromopropane 121 Acetone

122 Cyclopentene
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2 is similar to a back-propagation artificial neural with the conventional ANN. The aim of this work
network (BNN). However, during the training the was to examine this conclusion in predicting of the
normalized inputs are changed by some infinitesimal FID and PID relative response factors for various
amount delta (D). In this regard, because the transfer organic compounds, which the mechanisms of which
function being utilized, a sigmoid, has a linear region show some nonlinear characteristics.
around the value 0.5, it is desirable when adding the
delta value to the normalized input to adjust the input
towards the linear region. Thus, the positive delta 3. Experimental
value should be added to normalized inputs which
are less than 0.5 and the negative delta values should 3.1. Data set
be added to normalized inputs which are greater than
0.5. For the hidden layer a similar manner is used. FID, Ar-PID and Kr-PID RRFs were taken from
The network 1 uses from weight updates produced Ref. [14]. This data set consists of 13 different
by the training network 2. Thus, training of the classes of organic compounds containing numerous
artificial neural network 1 is not carried out with functional groups such as alcohols, ketones, alde-
algorithmic code, but rather by a network training a hydes, esters, alkenes, alkynes, alkanes, halides,
network. thiols, nitros, ethers, cyanides, and sulfides. These

In a previous work we have compared the per- molecules were randomly divided into two groups: a
formance of the STANN with the conventional ANN training set and a prediction set (Table 1). The
in predicting the gas chromatographic relative re- training and prediction sets consist of 105 and 17
tention times of a variety of organic compounds [13]. compounds, respectively. The training set was used
It was shown that using a STANN reduces the for the generation of models and the prediction set
number of the adjustable parameters in the network was used for the evaluation of the generated models.
and the optimization procedure was faster compared The prediction set consists almost all types of

Table 2
Specifications of the selected multiple linear regression models for different detectors

Detection method Descriptor Notation Coefficient Mean effect

FID Boiling point b.p. 20.003 (60.000) 20.338
Maximum bond order of C–X MBOC 1.289 (60.187) 2.655

1Path one connectivity index x 20.099 (60.022) 20.246p

polarizability a 20.085 (60.030) 20.601
2Square of polarizability a 0.006 (60.002) 0.351

Relative number of C atoms RENC 1.422 (60.224) 0.468
Maximum valency of H atoms MVH 20.614 (60.153) 20.602
Constant 21.075 (60.246)

Ar-PID Molecular density MD 20.920 (60.110) 20.959
Dipole moment DIMO 20.065 (60.018) 20.085

3Cluster three connectivity index x 20.117 (60.039) 20.033c

Heat of formation DH 0.002 (60.000) 20.073
Highest occupied molecular orbital HOMO 0.085 (60.024) 20.887
Distance between center of mass and center of charge DMCH 20.134 (60.050) 20.055
Constant 2.833 (60.278)

Kr-PID Molecular density MD 21.015 (60.164) 21.073
4Path four connectivity index x 20.193 (60.066) 20.071p

Highest occupied molecular orbital HOMO 0.221 (60.027) 22.310
Principal moment of inertia about x axis MO 0.163 (60.026) 0.076x

Relative weight of effective C atoms REWC 0.663 (60.153) 0.351
Constant 3.303 (60.294)
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molecules included in the training set and therefore, Fortran 77 in our laboratory. The networks were
is a good representative of the training set. generated using the descriptors appearing in the

MLR models as inputs. A three-layer network with a
3.2. Descriptor generation sigmoid transfer function was designed for each of

STANNs and ANNs. Before training the STANNs
A total of 77 separate molecular structure de- and ANNs, the input and output values of the

scriptors were calculated for each compound in the networks were normalized between 0.1 and 0.9. The
data set. These descriptors can be classified into four number of nodes in the hidden layer, learning rate
major groups: topological, geometric, electronic, and and momentum were optimized. The initial weights
physicochemical. Topological descriptors were were selected randomly between 21 and 11. As
calculated using two-dimensional representation of can be seen from Table 2, the MLR model for FID
the molecules. Geometric and electronic descriptors RRFs includes seven descriptors. Therefore, the
depend on the three-dimensional coordinates of number of inputs in the STANN and ANN for FID
atoms. Therefore, in order to calculate these types of were seven and the number of nodes in the output
descriptors one need to optimize the molecular layer was set to be one. Two MLR models for
structure of each compound. In the present work, the Ar-PID and Kr-PID RRFs include six and five
three-dimensional structure of each molecule was descriptors, respectively. Therefore, the number of
optimized using self-consistence molecular orbital inputs for the STANNs and ANNs for Ar-PID was
method of AM1 (SCF-MO AM1) implemented in six and in the case of Kr-PID was five, and the
the MOPAC package (version 6) [15]. Some of the number of nodes in the output layer was set to be
descriptors generated for each compound encoded one. In order to evaluate the performance of the
similar information about the molecule of interest. STANNs and ANNs, the standard error of training
Therefore, it was desirable to test each descriptor and (SET) and the standard error of prediction (SEP)
eliminate those, which show high correlation (R. were used.
0.90) with each other. A total of 19 out of 77
descriptors showed high correlation and was re-
moved from the consideration. Then, multiple linear 4. Results and discussion
regression (MLR) method was used to build the
linear models that relate the RRFs to the structural As can be seen from Table 1, the data set consists
parameters (descriptors). Three selected MLR of a diverse set of molecules. Table 2 shows the
models for FID, Ar-PID and Kr-PID are presented in specifications of three selected MLR models for FID,
Table 2. Ar-PID, and Kr-PID RRFs. The mean effect for each

parameter is also included in this table. Inspection of
3.3. STANN and ANN generation the variables appearing in the MLR models reveals

that these parameters encode different aspects of the
The STANN and ANN programs were written in molecular structure and properties.

Table 3
aArchitectures of the STANNs and ANNs and specifications for different detection methods

FID Ar-PID Kr-PID

STANN ANN STANN ANN STANN ANN

Number of nodes in the input layer 7 7 6 6 5 5
Number of nodes in the hidden layer 7 7 7 7 6 6
Number of nodes in the output layer 1 1 1 1 1 1
Number of iterations in the beginning of overfitting 295 000 472 500 18 000 18 000 83 000 319 000
Learning rate 0.8 0.8 0.99 0.99 0.9 0.9
Momentum 0.4 0.4 0.9 0.9 0.4 0.4

a The transfer function for all models is a sigmoid function.
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In FID, the amount of ions formed determines the The second and third MLR models in Table 2 are
conductivity, which is registered as a response. The due to Ar-PID and Kr-PID and have six and five
response of hydrocarbons in this detector is attribu- descriptors, respectively. Inspection of these models
ted to the number of carbon atoms from which they reveals that topological, geometric and electronic
are made up and to the chemical nature of the properties of molecules play some roles in the
molecules. The relative number of carbon atoms in mechanism of the relative response factors of these
the molecule (RENC) is an important descriptor that detectors. The PID response is directly proportional
was appeared in the MLR model of FID. The FID to the probability of photoionization and thus to the
response of heteroatom-substituted hydrocarbons is number of potentially photoionizable electrons in the
always less than that of the parent hydrocarbon. molecule. The most important descriptor in the PID
Therefore, the descriptors that contain information MLR models is energy of highest occupied molecu-
about the relative number or relative weight of lar orbital (HOMO) which based on Koopmann
carbon atoms in a compound are very important. theorem is numerically equal to the ionization po-
RENC in the MLR model has a positive regression tential (IP) but with a negative sign. Mean effect of
coefficient, and in agreement with the experiment this parameter in the models is negative indicating
indicates that as the number of carbon atoms in- that a compound with a higher ionization potential
creases the FID response increases. In addition, the (IP) has a lower value for the PID response. The
process of response of organic structures in the FID presence of topological descriptors such as cluster

3starts with the thermal decomposition of C–X bonds, three connectivity index ( x ) in the Ar-PID MLRc
4where X can be any atom. This can be represented model and path four connectivity index ( x ) in thep

by the number of different C–X bonds or by Kr-PID MLR model with negative regression co-
descriptors expressing the strength of such bonds. efficients indicate that increasing of degree of
The presence of the descriptor of maximum bond branching decreases the PID RRFs. The other de-
order of carbon atoms (MBOC) in the MLR model scriptor that is appeared in both MLR models is
can be attributed to this effect. The presence of molecular density (MD). This parameter represents
descriptors expressing the strength of the X–H bonds the ratio of molecular mass to the Van der Waals
such as maximum valency of hydrogen atoms volume of the molecules that can be considered as a
(MVH) in the MLR model of FID are also very measure of the compactness of the molecules and
important. Since these bonds are on the branches of therefore is a very important parameter affecting the
the molecules and are mostly exposed in molecular PID response. It can be seen that mean effect of this
collisions, therefore the thermal cracking usually parameter is negative for both Ar-PID and Kr-PID
starts with these bonds. Appearance of the path one models. It is noteworthy that only the parameters of

1connectivity index ( x ) with negative mean effect in HOMO and MD are appeared in both MLR modelsp

the MLR model of FID reveals that as degree of for Ar-PID and Kr-PID systems while the remaining
branching increases the RRF value decreases. Boil- parameters are different. This is in agreement with
ing point (b.p.) of the molecules as a physico- the experiment, which shows that there is no correla-
chemical parameter with a relatively small negative tion between the above-mentioned detectors [14].
mean effect of 20.338 is also appeared in the model. The main goal of the present study was generation
This is in agreement with the experiment, because as of the STANNs for modeling of FID and PID RRFs.
boiling point of a molecule is higher, the inter- In the case of STANN, a new method was used for
amolecular forces are stronger and therefore, the updating the node’s weights. Before the training of
ionization of these molecules in FID is more dif- these networks, the parameters of the number of
ficult. In order to improve the statistical parameters nodes in the hidden layer, learning rate and momen-
of the MLR models, different types of combination tum were optimized. The procedure for the optimi-
of descriptors such as square and cubic terms were zation of these parameters is reported in Refs.
examined. It can be seen from Table 2 that square of [4,5,16]. The architectures and specifications of the

2the polarizability (a ) was entered in the MLR optimized STANNs for FID and PID systems are
model for FID. However, addition of this parameter shown in Table 3. Also, a simple ANN was used for
improves the results of the MLR model. prediction of FID and PID RRFs. For comparison
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Table 4
Experimental and calculated values of the RRFs for the training and prediction sets of FID, Ar-PID and Kr-PID using neural networks

aNo. FID Ar-PID Kr-PID

Exp STANN ANN Exp STANN ANN Exp STANN ANN

Training set
1 0.1087 0.0706 0.0585 1.7177 1.7213 1.7114 0.1116 0.1133 0.1025
2 0.1660 0.1904 0.1964 0.6351 0.7349 0.7248 0.0118 0.0027 0.0123
3 0.2350 0.1974 0.1972 0.5497 0.5834 0.5868 0.0084 0.0889 0.0153
4 0.2577 0.2124 0.1962 1.0300 1.0796 1.0920 0.1352 0.1538 0.1359
5 0.2815 0.2666 0.2630 0.0273 0.0684 0.0637 0.0232 0.0632 0.0330
6 0.3106 0.3030 0.2944 0.9763 1.0497 1.0182 0.5900 0.6972 0.5690
7 0.3232 0.3416 0.3371 0.7868 0.8020 0.7883 0.4363 0.4923 0.3180
8 0.3234 0.3166 0.3386 2.0094 2.0519 2.0534 2.1856 2.1898 2.1773
9 0.3259 0.3518 0.3470 0.7507 0.8035 0.7828 0.2336 0.3070 0.2510
10 0.3334 0.3555 0.3436 0.7946 0.8279 0.8282 0.3357 0.3036 0.4183
11 0.3466 0.3245 0.3229 1.2989 1.3681 1.3597 1.1322 1.2420 1.1218
12 0.3587 0.4234 0.4294 0.5674 0.5584 0.5429 0.0406 20.0020 20.0311
13 0.3600 0.2794 0.2958 1.0752 1.1359 1.1196 0.0129 20.0297 20.0742
14 0.3647 0.3857 0.3856 0.7975 0.7787 0.7617 0.1299 0.1157 0.0496
15 0.3690 0.3315 0.3234 0.7558 0.7530 0.7333 0.1134 0.1053 0.0780
16 0.3787 0.3987 0.3964 0.5381 0.4542 0.4430 0.2584 0.3466 0.3098
17 0.3788 0.3787 0.3641 0.6644 0.6004 0.5990 0.0427 0.0274 0.0161
18 0.4073 0.4327 0.4282 0.6374 0.6595 0.6640 0.0832 0.0619 0.0680
19 0.4141 0.3452 0.3417 0.7357 0.8404 0.8137 0.0306 0.1191 0.0470
20 0.4158 0.4268 0.4280 0.6796 0.6867 0.6214 0.0344 0.0646 0.0870
21 0.4261 0.4130 0.4107 0.5213 0.4540 0.4448 0.1976 0.2713 0.2105
22 0.4270 0.4482 0.4434 0.5786 0.5928 0.6072 0.1315 0.1254 0.1592
23 0.4297 0.3801 0.3997 1.0928 1.0926 1.0742 0.6477 0.6161 0.6820
24 0.4344 0.3616 0.3576 0.7885 0.7668 0.7405 0.4555 0.5093 0.5212
25 0.4380 0.4187 0.4127 0.9715 0.8836 0.8758 0.1398 0.1473 0.1512
26 0.4449 0.4166 0.4177 0.4644 0.5019 0.4783 0.0436 0.1009 0.0759
27 0.4470 0.4626 0.4639 1.0463 0.8718 0.8564 0.6376 0.6399 0.6625
28 0.4569 0.4355 0.4335 0.7367 0.7057 0.7078 0.0126 0.0282 20.0103
29 0.4575 0.4105 0.4030 0.7599 0.7410 0.7433 0.2215 0.2386 0.2489
30 0.4637 0.4540 0.4578 0.6098 0.5459 0.5334 0.1625 0.1340 0.1576
31 0.4720 0.4101 0.4117 0.5068 0.4662 0.4435 0.0650 0.1368 0.0680
32 0.4743 0.5261 0.5232 0.6321 0.7579 0.7267 0.6379 0.3394 0.6305
33 0.4748 0.4601 0.4440 0.8169 0.8263 0.7974 0.0514 0.0333 0.0635
34 0.4751 0.4852 0.4941 0.5420 0.4847 0.4684 0.0447 0.0792 0.0376
35 0.4814 0.4970 0.4935 0.7240 0.7723 0.7236 0.0375 20.0583 0.0092
36 0.4827 0.4545 0.4499 1.0508 1.1537 1.1726 0.8419 0.7967 0.8545
37 0.4832 0.4428 0.4372 0.7992 0.8491 0.8278 ND 0.7353 0.7037
38 0.4868 0.4819 0.4823 0.8381 0.8029 0.7890 0.3257 0.3397 0.3271
39 0.4870 0.5017 0.5036 0.8727 0.7579 0.7433 0.3200 0.2930 0.2923
40 0.4941 0.4833 0.4745 0.7240 0.5887 0.5851 0.0075 0.0261 20.0125
41 0.4959 0.5554 0.5582 0.5095 0.5369 0.5188 0.0630 0.0311 0.0531
42 0.4966 0.5014 0.5023 0.7385 0.7534 0.7382 0.3162 0.4756 0.4468
43 0.5007 0.4934 0.4926 0.3498 0.4761 0.4618 0.3908 0.2297 0.2088
44 0.5028 0.4565 0.4585 0.8149 0.8003 0.7835 0.1599 0.1531 0.2027
45 0.5041 0.4872 0.4843 1.5510 1.4763 1.4702 1.0475 1.0152 1.0165
46 0.5082 0.4564 0.4582 0.8102 0.5188 0.5129 0.1590 0.3256 0.3301
47 0.5166 0.5040 0.5028 0.5395 0.4833 0.4669 0.1443 0.2386 0.2630
48 0.5175 0.5211 0.5244 0.5996 0.5125 0.4895 0.0637 0.0130 0.0239
49 0.5200 0.4540 0.4527 0.4277 0.4499 0.4337 0.1962 0.2702 0.2876
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Table 4. Continued
aNo. FID Ar-PID Kr-PID

Exp STANN ANN Exp STANN ANN Exp STANN ANN

50 0.5287 0.5117 0.5077 0.5879 0.5542 0.5051 0.1013 0.1381 0.1400
51 0.5316 0.4788 0.4814 0.6284 0.7285 0.7189 0.0727 0.0822 0.1315
52 0.5396 0.5306 0.5270 0.7517 0.7497 0.7325 0.3250 0.3073 0.3015
53 0.5449 0.5529 0.5667 0.4712 0.4976 0.4811 0.0440 0.1546 0.1219
54 0.5450 0.4733 0.4745 0.4573 0.4605 0.4461 0.2632 0.2755 0.2305
55 0.5462 0.5515 0.5485 0.6857 0.7757 0.7609 0.2971 0.3513 0.3338
56 0.5480 0.5586 0.5446 0.5724 0.5549 0.5455 0.1539 0.2172 0.1477
57 0.5563 0.4978 0.4898 0.8955 0.9174 0.8960 ND 0.6869 0.6702
58 0.5702 0.4869 0.4900 0.9096 0.8922 0.8805 0.2744 0.3086 0.2557
59 0.5721 0.4290 0.4274 0.4717 0.4561 0.4352 0.1393 0.1692 0.1159
60 0.5873 0.5770 0.5704 1.0451 0.9602 0.9499 0.5755 0.6235 0.6056
61 0.5898 0.6339 0.6159 0.7624 0.8204 0.7900 0.1730 0.1578 0.2062
62 0.6013 0.5243 0.5299 0.5767 0.5457 0.5657 0.0826 0.0296 0.0136
63 0.6013 0.5691 0.5670 0.7668 0.7218 0.7081 0.2845 0.3312 0.3162
64 0.6243 0.7080 0.6957 0.9569 0.7688 0.7465 0.7304 0.5791 0.5915
65 0.6458 0.5867 0.5959 0.6149 0.6004 0.6286 0.0660 0.0764 0.0535
66 0.6479 0.6014 0.6133 0.5562 0.4966 0.4843 0.2534 0.2518 0.2225
67 0.6483 0.6690 0.6603 1.0434 1.0055 0.9853 0.7115 0.6843 0.6810
68 0.6543 0.5039 0.5027 0.2055 0.1888 0.1744 0.0305 0.0200 20.0289
69 0.6595 0.6491 0.6442 0.8801 0.7183 0.6972 0.5860 0.4612 0.4571
70 0.6646 0.6319 0.6279 0.8325 0.7118 0.7004 0.5486 0.5474 0.5528
71 0.6708 0.6687 0.6607 0.6971 0.6559 0.6349 0.3784 0.3582 0.3567
72 0.6762 0.6777 0.6717 0.6362 0.6903 0.6678 0.2983 0.3352 0.3267
73 0.6769 0.6113 0.6219 0.9675 0.9118 0.8926 1.2091 1.1232 1.0940
74 0.6809 0.6207 0.6220 0.7826 0.6964 0.6813 0.2856 0.3286 0.3419
75 0.6887 0.6302 0.6342 1.0316 0.7920 0.7662 0.3668 0.3289 0.3245
76 0.7009 0.7906 0.7762 0.5102 0.4985 0.4811 0.2665 0.1980 0.2504
77 0.7014 0.6825 0.6749 0.7449 0.6405 0.6149 0.3314 0.3149 0.3123
78 0.7115 0.7359 0.7225 0.5626 0.4677 0.4374 0.2879 0.1922 0.1878
79 0.7119 0.6857 0.6912 0.4564 0.5017 0.4841 0.0453 0.0528 0.0305
80 0.7158 0.6783 0.6696 0.0163 20.0095 0.0011 0.0111 20.0013 0.0139
81 0.7242 0.6879 0.6784 0.7484 0.6538 0.6398 0.0184 0.0094 0.0961
82 0.7272 0.7405 0.7309 0.5662 0.5157 0.4992 0.4715 0.3280 0.2480
83 0.7298 0.6942 0.6691 0.3751 0.4715 0.4530 0.4287 0.2402 0.2828
84 0.7343 0.6987 0.7015 0.4853 0.5798 0.5634 0.0406 20.0220 0.0308
85 0.7350 0.6863 0.6885 0.7993 0.9537 0.9119 0.5923 0.5986 0.6568
86 0.7589 0.7350 0.7176 0.8594 0.7483 0.7382 0.0719 0.0541 0.0304
87 0.7678 0.7293 0.7493 0.9855 0.8359 0.8253 0.4068 0.3439 0.3986
88 0.7689 0.7419 0.7386 0.7031 0.6764 0.6537 0.0450 0.0296 0.0705
89 0.8058 0.7734 0.7619 0.6309 0.5541 0.5505 0.0254 0.0295 0.0502
90 0.8423 0.8343 0.8311 0.5681 0.6688 0.6394 0.4893 0.4892 0.4726
91 0.8642 0.8756 0.8718 0.9582 0.8978 0.8922 0.3190 0.2929 0.2751
92 0.8736 0.8752 0.8828 0.7495 0.6566 0.6402 0.3627 0.2941 0.2964
93 0.9204 0.8529 0.8591 0.8025 0.7352 0.7217 0.3477 0.3859 0.3665
94 0.9358 0.9539 0.9461 0.5808 0.5291 0.5328 0.0621 20.0027 20.0074
95 0.9371 0.6595 0.6523 0.8858 0.7674 0.7552 0.6240 0.4535 0.4484
96 0.9440 0.7376 0.7416 0.4111 0.4541 0.4272 0.0804 0.0302 0.0059
97 0.9473 0.9680 0.9745 0.0354 20.0163 20.0331 0.0450 0.0328 0.0054
98 0.9527 0.9808 0.9557 0.6832 0.7158 0.6975 0.0773 0.1800 0.2528
99 1.0062 0.9011 0.9283 0.8109 0.8493 0.838 0.0278 0.0351 0.0247
100 1.0232 1.0286 1.0199 0.7023 0.6238 0.6051 0.0404 0.0013 0.0732
101 1.1259 1.1264 1.1225 0.6744 0.7418 0.7268 0.4911 0.5012 0.5139
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Table 4. Continued
aNo. FID Ar-PID Kr-PID

Exp STANN ANN Exp STANN ANN Exp STANN ANN

102 1.1690 1.1077 1.0994 1.2599 1.1965 1.1798 0.7967 0.7051 0.7323
103 1.2200 1.2205 1.2158 0.8260 0.7759 0.7601 0.0334 0.0488 0.0919
104 1.2267 1.1801 1.1764 0.7407 0.7464 0.7346 0.3986 0.4072 0.4206
105 1.2935 1.2821 1.2775 1.0668 1.0802 1.0854 0.2015 0.3600 0.1990

Prediction set
106 0.2779 0.3512 0.2904 0.8297 0.8220 0.7860 0.0262 0.0060 20.0497
107 0.3548 0.3538 0.3667 0.8873 0.7211 0.7238 0.0115 20.1036 20.1065
108 0.4244 0.4690 0.4680 0.9059 0.8800 0.8351 0.5500 0.6383 0.5269
109 0.4292 0.4459 0.4367 0.6554 0.5564 0.5332 0.2239 0.2135 0.2183
110 0.4786 0.4206 0.4116 0.5495 0.5760 0.5780 ND 0.2332 0.3268
111 0.5112 0.4814 0.4814 0.6921 0.6939 0.6784 0.0820 0.0478 0.0624
112 0.5203 0.5215 0.5303 0.0963 0.0612 0.0777 0.0342 20.0646 20.0319
113 0.5412 0.4979 0.4887 0.8146 0.8806 0.8737 ND 0.3434 0.2612
114 0.5809 0.4982 0.5019 0.5823 0.7454 0.7036 0.0298 20.022 0.0376
115 0.6143 0.6225 0.6190 0.5086 0.5720 0.5536 0.0396 0.0731 20.0135
116 0.6502 0.7412 0.7427 0.6271 0.5408 0.5318 0.2283 0.2916 0.3146
117 0.6668 0.5993 0.5952 0.1082 0.2085 0.2675 0.0192 0.0243 20.0043
118 0.6803 0.6566 0.6627 1.1692 0.9016 0.9054 1.3453 1.2534 1.1833
119 0.7200 0.6641 0.6554 0.7280 0.6949 0.6733 ND 0.3658 0.3571
120 0.7408 0.8443 0.8224 0.5744 0.5637 0.5506 0.3231 0.1878 0.2240
121 0.8462 0.7905 0.7782 0.4466 0.4663 0.4450 0.4157 0.2205 0.2772
122 1.1528 1.0842 1.0689 0.7001 0.7977 0.7697 0.4803 0.6645 0.7022

ND: Not detected.
a The numbers refer to the numbers of the molecules given in Table 1.

purposes, the architectures and specifications of the STANNs and ANNs, the trained STANNs and
optimized FID and PID ANNs are also given in ANNs were used to predict the RRFs of the mole-
Table 3. In order to control the overfitting of the cules included in the prediction set. The calculated
networks during the training procedure, the SET and values of RRFs using the generated STANNs and
SEP values were recorded after each 500 iterations. ANNs for the training and the prediction sets of FID,
In the case of STANN, for FID after 295 000 Ar-PID and Kr-PID are presented in Table 4. For
iterations the values of SEP started to increase and Kr-PID, the RRFs of five compounds that their
overtraining began and for Ar-PID and Kr-PID, experimental values are not available were calculated
overtraining began after 18 000 and 83 000 itera- using the STANN and ANN and are given in Table
tions, respectively. These numbers should be com- 4. The statistical parameters, such as correlation
pared with 472 500, 18 000, and 319 000, respective- coefficients (R) between the calculated and ex-
ly, for the conventional ANN. This means that in perimental values of RRFs and standard errors (SEs)
agreement with our previous work the training of the for the training and prediction sets obtained using the
STANN is much faster compared with that of the STANNs, ANNs, and MLR models are shown in
simple ANN. The number of inputs in the STANNs Table 5. Inspections of the SET and SEP values for
is the same as the number of descriptors appearing in the STANN, ANN and MLR methods reveal the
the MLR models. The topology of STANN for FID superiority of the neural networks over that of the
was 7-7-1, and the structures of STANN for Ar-PID MLR in predicting of the RRFs. This is due to the
and Kr-PID were 6-7-1 and 5-6-1, respectively. For nonlinear capabilities of the STANNs and ANNs. As
the evaluation of the prediction ability of the can be seen from Table 5, the values of the SET and
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Table 5
Statistical parameters obtained using the STANN, ANN and MLR models for RRFs of different detection methods

Detection method Model SET (%) SEP (%) R Rtraining prediction

FID STANN 4.107 3.849 0.975 0.959
ANN 3.961 3.778 0.977 0.963
MLR 12.051 8.240 0.859 0.889

Ar-PID STANN 3.703 4.076 0.963 0.926
ANN 3.735 4.161 0.964 0.930
MLR 18.220 20.897 0.793 0.653

Kr-PID STANN 2.680 3.798 0.974 0.959
ANN 2.516 3.677 0.979 0.962
MLR 19.937 29.836 0.794 0.610

SEP are comparable for each method and since this the values of SET and SEP for the prediction set are
is true for all models one may conclude that the similar to those of the test sets in the cases of
prediction set is a very good representative of the STANN and ANN models. This indicates that the
training set. However, it is common to have an networks are independent from the prediction set. On
additional external validation set to make sure that the other hand, the values of SET and SEP that are
the predictive ability of the neural networks is good. between 2.497% to 4.861% indicating the good
Unfortunately, we were not been able to find a set of predictive ability of the neural networks in predicting
molecules with RRF values obtained exactly at the of the RRFs.
same condition and with RRF values of full range. Fig. 2a–c show the plots of the STANN calculated
Therefore, we have randomly chosen two different values of RRFs against the experimental values for
test sets each consisting of 17 molecules and the FID, Ar-PID and Kr-PID, respectively. Fig. 3a–c
networks were trained using the remaining mole- show the plots of the residuals against the ex-
cules. The results of these sets for the three detectors perimental values of RRFs, for the STANNs and
are given in Table 6. As can be seen from this table, ANNs models of FID, Ar-PID and Kr-PID. The

Table 6
Comparison of the SET and SEP of the two test sets with the prediction set for different detection methods

Detection Model STANN ANN
method

SET (%) SEP (%) SET (%) SEP (%)

FID Prediction set 4.107 3.849 3.961 3.778
Test set I 4.008 3.721 4.048 3.854
Test set II 4.671 3.913 4.699 3.970

Ar-PID Prediction set 3.703 4.076 3.735 4.161
Test set I 3.322 4.832 3.354 4.861
Test set II 3.873 4.547 3.645 4.291

Kr-PID Prediction set 2.680 3.798 2.516 3.677
Test set I 2.813 4.383 2.497 4.673
Test set II 2.574 3.961 2.696 3.927
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Fig. 2. Plot of the STANN calculated values of RRFs versus the experimental values (a) FID; (b) Ar-PID; (c) Kr-PID.

propagation of the residuals in both sides of zero obtained using different models of STANN, ANN
indicate that no systematic error exist in the develop- and MLR for predicting of RRFs of different detec-
ment of the STANNs and ANNs. tors shows superiority of the neural networks over

that of linear regression model. Inspection of the
statistical parameters (Table 5) indicates that the use

5. Conclusions of the linear models in predicting of RRFs of
different detectors is not justified. Since the improve-

Comparison of the values of the SET and SEP ment of the results obtained using the nonlinear
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models of artificial neural networks is considerable,
one may conclude that the nonlinear characteristics
of the RRFs are serious.

Investigation of the calculated STANN values of
RRFs with those of simple ANN indicates that these
models are comparable in predicting FID, Ar-PID
and Kr-PID RRFs for a variety of organic com-
pounds. The only advantage of the STANN over that
of the simple ANN is that the optimization procedure
of the former is much faster. In addition, in con-
tradiction to our previous conclusion [13], the num-
bers of adjustable parameters for both models are the
same and therefore, there is no difference between
the validity of these models in prediction of the
RRFs.
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